Q-Learning and Redundancy Reduction in Classifier Systems with Internal State
نویسندگان
چکیده
The Q-Credit Assignment (QCA) is a method, based on Q-learning, for allocating credit to rules in Classiier Systems with internal state. It is more powerful than other proposed methods, because it correctly evaluates shared rules, but it has a large computational cost, due to the Multi-Layer Perceptron (MLP) that stores the evaluation function. We present a method for reducing this cost by reducing redundancy in the input space of the MLP through feature extraction. The experimental results show that the QCA with Redundancy Reduction (QCA-RR) preserves the advantages of the QCA while it signiicantly reduces both the learning time and the evaluation time after learning.
منابع مشابه
Redundancy Allocation Problem of a System with Three-state Components: A Genetic Algorithm (RESEARCH NOTE)
The redundancy allocation is one of the most important and useful problems in system optimization, especially in electrical and mechanical systems. The object of this problem is to maximize system reliability or availability within a minimum operation cost. Many works have been proposed in this area so far to draw the problem near to real-world situations. While in classic models the system com...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملComparing Parallel Simulated Annealing, Parallel Vibrating Damp Optimization and Genetic Algorithm for Joint Redundancy-Availability Problems in a Series-Parallel System with Multi-State Components
In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state components. We analyzed various effective factors on system availability in order to determine the optimum number and version of components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and impr...
متن کاملSet a bi-objective redundancy allocation model to optimize the reliability and cost of the Series-parallel systems using NSGA II problem
With the huge global and wide range of attention placed upon quality, promoting and optimize the reliability of the products during the design process has turned out to be a high priority. In this study, the researcher have adopted one of the existing models in the reliability science and propose a bi-objective model for redundancy allocation in the series-parallel systems in accordance with th...
متن کامل